BACK
TO
TOP
Browse A-Z

Spanish Version
 
E-mail Form
Email Results

 
 
Print-Friendly
Bookmarks
bookmarks-menu

Autosomal recessive

Genetics - autosomal recessive; Inheritance - autosomal recessive

Autosomal recessive is one of several ways that a trait, disorder, or disease can be passed down through families.

An autosomal recessive disorder means two copies of an abnormal gene must be present in order for the disease or trait to develop.

Information

Inheriting a specific disease, condition, or trait depends on the type of chromosome that is affected. The two types are autosomal chromosomes and sex chromosomes. It also depends on whether the trait is dominant or recessive.

A mutation in a gene on one of the first 22 nonsex chromosomes can lead to an autosomal disorder.

Genes come in pairs. One gene in each pair comes from the mother, and the other gene comes from the father. Recessive inheritance means both genes in a pair must be abnormal to cause disease. People with only one defective gene in the pair are called carriers. These people are most often not affected with the condition. However, they can pass the abnormal gene to their children.

CHANCES OF INHERITING A TRAIT

If you are born to parents who both carry the same autosomal recessive gene, you have a 25% (1 in 4) chance of inheriting the abnormal gene from both parents and developing the disease. You have a 50% (1 in 2) chance of inheriting one abnormal gene. This would make you a carrier.

In other words, for a child born to a couple who both carry the gene (but do not have signs of disease), the expected outcome for each pregnancy is:

  • A 25% chance that the child is born with two normal genes (normal)
  • A 50% chance that the child is born with one normal and one abnormal gene (carrier, without disease)
  • A 25% chance that the child is born with two abnormal genes (at risk for the disease)

Note: These outcomes do not mean that the children will definitely be carriers or be severely affected.

References

Feero WG, Zazove P, Chen F. Clinical genomics. In: Rakel RE, Rakel DP, eds. Textbook of Family Medicine. 9th ed. Philadelphia, PA: Elsevier; 2016:chap 43.

Gregg AR, Kuller JA. Human genetics and patterns of inheritance. In: Resnik R, Lockwood CJ, Moore TR, Greene MF, Copel JA, Silver RM, eds. Creasy and Resnik's Maternal-Fetal Medicine: Principles and Practice. 8th ed. Philadelphia, PA: Elsevier; 2019:chap 1.

Jones KL, Jones MC, Campo M. Genetics, genetic counseling, and prevention. In: Jones KL, Jones MC, Campo MD, eds. Smith's Recognizable Patterns of Human Deformation. 8th ed. Philadelphia, PA: Elsevier; 2022:chap 2.

Korf BR. Principles of genetics. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine. 26th ed. Philadelphia, PA: Elsevier; 2020:chap 35.

  • Autosomal recessive - illustration

    Autosomal recessive is one of several ways that a trait, disorder, or disease can be passed down through families. An autosomal recessive disorder means two copies of an abnormal gene must be present in order for the disease or trait to develop. For a child born to a couple who both carry the gene (but the parents themselves do not have signs of disease), the expected outcome for each pregnancy is: a 50% chance that the child is born with one normal and one abnormal gene (carrier, without disease), a 25% chance that the child is born with two normal genes (normal), and a 25% chance that the child is born with two abnormal genes (at risk for the disease). Note: These outcomes do not mean that the children will definitely be carriers or be severely affected.

    Autosomal recessive

    illustration

  • X-linked recessive genetic defects - illustration

    There are several X-linked (or sex-linked) recessive genetic disorders, (hemophilia, muscular dystrophy) which are inherited through a genetic defect on an X chromosome. A female has 2 X chromosomes, one she inherited from her mother and one she got from her father. A male has an X chromosome from his mother and a Y chromosome from his father. If a woman has the defect on one of her X chromosomes, and the father's X chromosome is normal, there is a 25% chance for each pregnancy to produce an unaffected girl; a girl who carries the defect; an unaffected boy; or a boy with the disorder.

    X-linked recessive genetic defects

    illustration

  • Genetics - illustration

    Genetics is the study of heredity and how traits are passed along from parents to offspring. Genes are contained within the chromosomes found within the egg and sperm. Each parent contributes one half of each pair or 23 chromosomes to their child, 22 autosomal and 1 sex chromosome. The inheritance of genetic diseases, abnormalities, or traits is described by both the type of chromosome the abnormal gene resides on (autosomal or sex chromosome), and by whether the gene itself is dominant or recessive.

    Genetics

    illustration

  • Autosomal recessive - illustration

    Autosomal recessive is one of several ways that a trait, disorder, or disease can be passed down through families. An autosomal recessive disorder means two copies of an abnormal gene must be present in order for the disease or trait to develop. For a child born to a couple who both carry the gene (but the parents themselves do not have signs of disease), the expected outcome for each pregnancy is: a 50% chance that the child is born with one normal and one abnormal gene (carrier, without disease), a 25% chance that the child is born with two normal genes (normal), and a 25% chance that the child is born with two abnormal genes (at risk for the disease). Note: These outcomes do not mean that the children will definitely be carriers or be severely affected.

    Autosomal recessive

    illustration

  • X-linked recessive genetic defects - illustration

    There are several X-linked (or sex-linked) recessive genetic disorders, (hemophilia, muscular dystrophy) which are inherited through a genetic defect on an X chromosome. A female has 2 X chromosomes, one she inherited from her mother and one she got from her father. A male has an X chromosome from his mother and a Y chromosome from his father. If a woman has the defect on one of her X chromosomes, and the father's X chromosome is normal, there is a 25% chance for each pregnancy to produce an unaffected girl; a girl who carries the defect; an unaffected boy; or a boy with the disorder.

    X-linked recessive genetic defects

    illustration

  • Genetics - illustration

    Genetics is the study of heredity and how traits are passed along from parents to offspring. Genes are contained within the chromosomes found within the egg and sperm. Each parent contributes one half of each pair or 23 chromosomes to their child, 22 autosomal and 1 sex chromosome. The inheritance of genetic diseases, abnormalities, or traits is described by both the type of chromosome the abnormal gene resides on (autosomal or sex chromosome), and by whether the gene itself is dominant or recessive.

    Genetics

    illustration

 

Review Date: 1/6/2022

Reviewed By: Anna C. Edens Hurst, MD, MS, Associate Professor in Medical Genetics, The University of Alabama at Birmingham, Birmingham, AL. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Medical Director, Brenda Conaway, Editorial Director, and the A.D.A.M. Editorial team.

The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed medical professional should be consulted for diagnosis and treatment of any and all medical conditions. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. No warranty of any kind, either expressed or implied, is made as to the accuracy, reliability, timeliness, or correctness of any translations made by a third-party service of the information provided herein into any other language. © 1997- A.D.A.M., a business unit of Ebix, Inc. Any duplication or distribution of the information contained herein is strictly prohibited.
© 1997- adam.com All rights reserved.

 
 
 

 

 

A.D.A.M. content is best viewed in IE9 or above, Firefox and Google Chrome browser.
Content is best viewed in IE9 or above, Firefox and Google Chrome browser.